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Grouper: A Compact, Streamable Triangle Mesh Data Structure

Mark Luffel, Topraj Gurung, Peter Lindstrom, and Jarek Rossignac

Fig. 1. Grouper represents a triangle mesh as groups of vertices and triangles stored as fixed-size records, most of which encode
two adjacent triangles and one incident vertex. A VTT group (tan: 93%) represents one vertex and two adjacent triangles incident
upon it; a VT group (blue: 3%) represents one vertex and one incident triangle; a T group (red: 4%) represents one triangle; and a
V group (black: 1%) represents one vertex. Thick edges separate groups; thin edges separate triangles within the same group.

Abstract—We present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for
large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity
of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex.
Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that
vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We present
a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the
initial ordering of vertices. As part of this construction, we show how the problem of assigning vertices and triangles to groups
reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in
practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices
and triangles. Storing only about two integer references per triangle—i.e. less than the three vertex references stored with each
triangle in a conventional indexed mesh format—Grouper answers both incidence and adjacency queries in amortized constant time.
Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for
distributed processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper
using a suite of example meshes and processing kernels.

Index Terms—Mesh compression, mesh data structures, random access, out-of-core algorithms, large meshes.

1 INTRODUCTION

Triangle meshes are the most common representation of sur-
faces in computer graphics and computational science. A typ-
ical representation of a triangle mesh is as a table of vertices
and a table of indices to the vertices, where each consecutive
triplet of indices represents one triangle. This “indexed mesh”
representation supports tasks such as rendering, but operations
that require knowing which triangles are adjacent to one an-
other necessitate a linear search over all triangles. To provide
constant-time access to adjacent elements it is common to store
additional adjacency references. Such information is required
by tasks such as tracing the intersection between surfaces, solv-
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ing differential equations defined on a surface, and by most
other geometry processing and analysis applications.

For massive meshes that do not fit in main memory, the con-
struction of adjacency relationships from an indexed mesh is a
difficult task. A typical approach requires a series of external
sorts [1], temporary storage several times that of the final data
structure (sometimes tens of gigabytes), and several hours to
construct [2–5]. The final data structure is usually a factor of 2–3
larger than an indexed mesh. Working with such a data struc-
ture often involves on-demand paging and explicit caching of
portions of the mesh.

As an alternative to such out-of-core data structures, simple
data analysis and geometry processing tasks can often be im-
plemented as stream kernels that make a single sequential pass
over the mesh. A streaming mesh [6] interleaves vertices and
triangles and encodes when mesh elements are last referenced,
allowing proactive deallocation and in-memory random access
to a small active set. Such mesh formats, which store only lit-
tle more information than an indexed mesh, can easily be con-
structed on the fly as part of a mesh generation process without
using any intermediate disk. However, for tasks that require ad-
jacency information, an in-memory partial data structure must
be built and maintained by the stream kernel, which must map



global vertex indices to the in-core data structure. This data
structure is then discarded, and the work required to build it
is replicated each time the mesh is processed, for instance by
each module in a pipelined computation. Moreover, because
stream processing relies on sequential I/O, it is not well suited
for tasks that require only select subsets of the mesh, such as lo-
calized queries and data-dependent traversals, as finding those
subsets may require visiting the whole mesh repeatedly.

To provide the flexibility of random access while achiev-
ing the resource efficiency of stream processing, we propose a
new all-in-one (1) binary format, (2) adjacency data structure,
and (3) streamable representation, called Grouper. Our format,
which builds upon the SQuad data structure [7], partitions the
mesh into groups represented by fixed-length records that store
up to one vertex and two incident triangles. The mesh con-
nectivity is represented as pointers between adjacent groups.
These pointers form loops in the dual graph. This information
is sufficient to determine both adjacency and incidence, allow-
ing meshes to be represented using only about two indices per
triangle (i.e. less than the three needed in an indexed mesh).
Grouper stores geometry and connectivity interleaved, and uses
a more general representation than SQuad that allows meshes
to be both streamed in and out of memory.

We show how our Grouper data structure can be constructed
efficiently from an incidence-based streaming mesh format us-
ing only a small memory buffer and localized reordering of tri-
angles (to decrease storage). The result may be streamed di-
rectly to another process or stored on disk. In the former case,
we show how windowed streaming of a Grouper mesh, which
uses a fixed-size in-memory buffer, eliminates the need to con-
struct connectivity on the fly, as normally required by stream
kernels that process incidence-based streaming formats. Be-
cause Grouper uses fixed-size records, it supports direct ac-
cess to incidence and adjacency for navigating the mesh. Us-
ing memory mapped I/O, out-of-core support may be provided
transparently to applications. Moreover, we show how data-
parallel processing can be achieved using OpenMP [8] for those
tasks that make sequential passes over the mesh, allowing sub-
stantial out-of-core processing speedups over prior methods.

2 PRIOR ART

Grouper brings together two threads of research: stream-
ing meshes for out-of-core computations and compact data
structures for random-access mesh processing (exemplified by
SQuad). We review these two types of representations as well
as external memory data structures in the following sections.

2.1 Compact Connectivity Representations
SQuad [7] is a triangle mesh data structure that provides
constant-time adjacency queries and makes efficient use of
memory, storing connectivity data in slightly more than 2 refer-
ences per triangle (rpt). SQuad organizes most triangles in pairs
that are matched with a single incident vertex. It stores adja-
cency relationships between triangles, but does not store vertex
indices. Instead it infers incident vertices by examining a small
set of candidates that are found by following loops in the dual
graph. Our Grouper data structure builds upon these ideas. Al-
though SQuad preserves vertex ordering, any unmatched trian-
gles must be stored separately (e.g. at the end of the connectiv-
ity array), which degrades coherence and makes SQuad meshes
difficult to stream both in and out of memory.

The LR data structure [9] is twice as compact as SQuad, stor-
ing about 1 rpt for connectivity, but is not suitable as a streaming
representation because its construction imposes a global order-
ing of the vertices of a mesh along a nearly Hamiltonian cycle.
This ordering may be incompatible with the one in which the
mesh is generated, in which case multiple streaming passes or
an external sort is needed to reorder the mesh. The Zipper im-
provement of LR stores only about 6 bits per triangle [10], but

suffers from the same limitations. To be of practical use, we
seek a data structure that can be built on the fly, concurrently
with the mesh generation or processing.

The Tripod data structure [11] also represents triangle mesh
connectivity. Its construction algorithm operates by contracting
edges starting from a seed triangle, resulting in labels at each
corner, and identifying three canonical outgoing edges per ver-
tex, from which the other incident edges and faces can be in-
ferred. This linear-time algorithm permits a single-pass stream-
ing implementation, but the resulting data structure, at 3 rpt,
is less compact than SQuad and can only represent genus zero
meshes. The construction of Tripod requires additional storage
for an auxiliary data structure that supports adjacency queries
and a data-dependent traversal.

2.2 External Memory Data Structures
A number of external memory data structures for triangle
meshes have been proposed, primarily for interactive visualiza-
tion. To handle very large meshes, these data structures often
support multiresolution adaptive refinement. The predominant
approach is to partition the mesh into chunks of many triangles
that are paged in from disk in atomic units [2–5, 12]. Memory
management and I/O are usually handled explicitly by the ap-
plication. Recognizing the performance bottleneck associated
with I/O, recent work has focused on compressed represen-
tations [13–15] that support local decompression for access to
vertices and triangles. Because these techniques use variable-
length coding, the mesh is again partitioned into chunks to
amortize the cost of specifying the locations of vertices and tri-
angles in the file across a larger portion of the mesh. The decom-
pressed mesh is usually cached in a conventional triangle mesh
data structure, along with adjacency information derived from
the compressed format. Although not as compact as these com-
pressed formats, our Grouper representation uses fixed-length
records and therefore supports random access at a much finer
granularity. Furthermore, accesses involve only array lookups,
and require no decoding or explicit caching.

2.3 Streaming Meshes
Streaming out-of-core computations process a mesh via sequen-
tial I/O, maintaining only a small portion of the mesh in core,
on which random access is possible. Because resolving refer-
ences from triangles to vertices in an indexed mesh typically
requires that all vertices be stored and can be looked up in
memory, early work on streaming assumed that the mesh was
represented as triangle soup. Each triangle in a triangle soup
is represented as a triplet of vertex positions (i.e. with no in-
dices), allowing the triangles to be processed independently one
at a time. Chiang and Silva [16] showed how a large indexed
mesh can be converted to triangle soup using a series of exter-
nal sorts, thereby stripping the mesh of its connectivity informa-
tion. For stream processing tasks that require connectivity, this
information has to be recovered on the fly, e.g. using geometric
hashing on vertex coordinates [17–19]. However, if the surface
has boundaries, the full connectivity around a vertex cannot be
known until the entire stream has been processed. To avoid the
problems of working with triangle soup, Isenburg et al. [20] sug-
gested using a compressed format from which both local con-
nectivity and geometry can be extracted. However, construction
of this format requires an expensive out-of-core preprocess.

Streaming Meshes [6] are an out-of-core representation of in-
dexed meshes that provide connectivity and geometry without
the need to first buffer all vertices. A streaming mesh may be
thought of as a decorated indexed mesh that interleaves ver-
tices and triangles—to provide a local view of a portion of
the mesh—and that supports garbage collection via reference
counting—to limit the memory footprint. Instead of storing
reference counts, a streaming format usually associates finaliza-
tion tags with the vertices that certify that no future triangle in
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Fig. 2. Grouper represents vertices and triangles in one of four configurations. The green shaded vertices are matched with these triangles, and
the orange arrows represent swing pointers c.z to corners of other groups or to one The V group has no triangle, so we associate its vertex with a
“virtual” corner. Within a group, corners are assigned in-group indices from zero to seven, with 0 identifying the corner matched with the vertex (or
the “virtual” corner in V groups, described in Section 3.1).

the stream references a particular vertex, e.g. using one extra
bit per vertex reference. This allows stream kernels to deal-
locate vertices when no longer needed, making it possible to
process meshes with billions of triangles on off-the-shelf desk-
top computers. Streaming meshes may be compressed and de-
compressed on the fly [21], making the transfer of large meshes
more feasible, and if secondary storage is very slow, improving
the performance of mesh processing. A large number of geom-
etry processing tasks have been adapted to streaming based on
the streaming mesh representation, including Delaunay trian-
gulation [22], remeshing [23], topological feature extraction [24],
mesh simplification [25], surface reconstruction [26, 27], sam-
pling [28], and mesh quality improvement [29], among others.

3 GROUPER

Our compact Grouper representation supports on-the-fly
streaming construction and processing, while also enabling
constant-time random access to vertices, triangles, and their
neighbors.

We present the details of the Grouper data structure in terms
of triangle “corners,” each of which associates a vertex with an
incident triangle. We say that a vertex v and triangle t are inci-
dent if v is a vertex of t; two vertices are adjacent if they belong
to the same triangle; and two triangles are adjacent if they share
an edge. We use corners as iterators over the mesh. These can be
manipulated by a set of traversal operators. We write operators
in a post-fix dot notation, similar to object-oriented program-
ming. The dot notation c.t does not imply that c is a data record
that contains a t field. For example, an operator may be imple-
mented as a lookup into an array, or as a function to compute
the value.

The operators applied to a corner c are illustrated in Fig. 3.
They are c.n (next) for circulating (clockwise) the corners within
a triangle, c.s (swing) for circulating (clockwise) the corners of
a vertex, and c.t (triangle) and c.v (vertex) for extracting the tri-
angle or vertex associated with c. We can combine these four
operators to express other convenient operators. For example,
previous can be written c.p = c.n.n and opposite can be writ-
ten c.o = c.p.s.p. Operators v.c and t.c return an unspecified
incident corner of (respectively) a vertex or a triangle.

In an uncompressed data structure for general polygonal
meshes, such as the half-edge representation [30], these opera-
tors are usually implemented using explicit pointers or indices.
In our case, only c.s is stored directly, while c.n and c.t are com-
puted from c, and c.v is inferred from c.s. This inference of c.v
is possible by matching each vertex with one of its incident cor-
ners, and by reordering the corners (and thus triangles) such
that the vertex index may be inferred from the corner index.

Grouper partitions the triangles and vertices of a mesh into
small groups of elements, of which there are four types: VTT,
VT, T, and V (Fig. 1 and 2). The type indicates whether the
group contains a vertex (V, VT, VTT), a triangle (T, VT), or two
triangles (VTT). Using the construction algorithm described in
this paper, most groups (> 90%) are of type VTT, and consist of

c.v

c.l c.s c.r
c

c.t

c.p c.n

c.o

Fig. 3. The standard set of corner operators.

a pair of adjacent triangles that are matched with one of their
shared vertices. In a mesh without boundary there are typically
few V groups, and the remaining non-VTT groups are roughly
equally divided into types T and VT.

Grouper stores a single array M of fixed-length records, each
encoding adjacency and geometry data associated with a sin-
gle group. Each record contains seven 32-bit values: four swing
references i, j, k, l to adjacent groups, and three vertex coordi-
nates x, y, z. We may optionally extend these records to support
user-specified data (e.g. color, normals, material indices). Con-
ceptually M is formed by interleaving a swing array S and a
geometry array G. For simplicity of presentation, we will ini-
tially assume that S is a single contiguous one-dimensional ar-
ray that stores i, j, k, l for each group. We will further assume
that the mesh is manifold without boundary—an assumption
we later relax.

The swing operators (called “swings”) circulate clockwise
around a vertex and form a closed loop. For each matched ver-
tex v, we know that its swing loop must pass through the group
containing v. Thus, for any corner c incident on v we can infer
the result of the c.v operator by traversing the loop with c.s. In
particular, using a canonical labeling of corners within a group,
only the “first” corner (corner 0) signifies a match. Because the
average vertex valence in a mesh with low genus (relative to its
number of triangles) is constant, the search through this swing
sequence completes in expected (average) constant time.

3.1 Connectivity Operators
To define the mesh traversal operators for a Grouper mesh, we
use a specific numbering of corners within a group (see Fig. 2).
Each group covers a range of eight corner indices, of which at
most six are used. Reserving eight rather than six corners al-
lows us to implement some operators more efficiently (as bit
shifts rather than divisions). Note that the unused corner in-
dices do not cost us any storage space, because we do not allo-
cate any per-corner data. Notice also that odd corner indices are
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2 3 - -
3 4 4 4
4 6 7 5
5 6 7 7
6 7 - -
7 0 3 8
8 0 3 null

Fig. 4. Operators c.s (black) and c.h (dashed blue) are implemented
in terms of operator c.z (orange) stored in the swing table S. Actual
corners are shown in orange; virtual corners in V groups and extensions
are hollow. Orange arrows c→ c.z traversing but not ending at a corner
c.s in a VTT group indicate that c and c.s share c.z = c.s.z, since only
one swing pointer per vertex is stored within a group.

assigned to the right triangle, which simplifies the index map-
ping from corners to triangles and vertices. Because in general
not all groups are of type VTT, some vertex and triangle indices
are unused. However, as we show in Section 7, this overhead
usually amounts to less than 5%.

A corner with in-group index x (see Fig. 2) in group g has a
global corner index c = 8g + x. Therefore, for a given integer
corner index c, we may compute its group index as c.g = c/8
(where x/y denotes integer division) and its in-group corner in-
dex as c mod 8. For a manifold vertex v matched with a trian-
gle, we could implement the c.v operator by walking around
v via c.s until a matched corner (in-group corner 0) is reached.
Clearly no such corner will be reached if v is not matched or
if c.s runs into a boundary (see Section 3.2). In addition, intra-
group swings (i.e. from corners 0 and 5 in VTT groups) never
lead to a matched corner, and therefore following such swings
is wasteful when evaluating c.v.

To address these problems, we define two operators for inter-
nal use, c.z and c.h, which are variants of c.s. The operator c.z
mimics c.s, but skips over intra-group swings and follows links
to and from V groups and across boundaries. Hence, c.z joins
groups incident on c.v in a circular linked list. We store in the
swing table S such links c.z rather than swings c.s. (Because of
their similarity, we will sometimes refer to both c.s and c.z as
swings around c.v.) We note that c.z refers either to an actual
triangle corner or to a virtual corner in a V group or extension (ex-
tensions are discussed in section 4.1.1), and we reserve one bit
with each S table entry c.z to indicate whether c is virtual. This
real bit is true for each non-null entry of VTT, VT, and T groups
and is false for all entries of V groups. For convenience, we
also define another internal operator, c.h, that applies c.z one or
more times to skip over any virtual corners. These operators are
illustrated in Fig. 4. We explain below how we implement c.v
and c.s using c.z.

c.s for intra-group swings involves only flipping the least sig-
nificant bit of c: 0 swings to 1, and 5 swings to 4. Inter-group
c.s swings, on the other hand, require accessing the c.z links,
which are stored as four entries per group; one for each of the
four vertices incident on the group (Fig. 2). To perform such a
swing, we first map the in-group corner index {0, 1, 2, 4, 5, 7}
to the corresponding in-group swing index {0, 1, 2, 3}, which
due to our corner numbering is easily computed as c/2 mod 4.
Because these four swings are encoded in the one-dimensional
array S as consecutive quadruplets, we may simply compute
group links as c.z = S[c/2]. Below we will also refer to these
links by group and in-group swing indices as g.i = S[4g + 0],

g.j = S[4g + 1], and so on (see Fig. 2).
Because all groups incident on c.v are joined by c.z links and

because intra-group swings never lead to a matched corner, by
following c.z around c.v a traversal is guaranteed to reach the
matching corner. Once we find the matching corner c, we com-
pute c.v = c/8.

Our operators for meshes without boundaries are imple-
mented as follows:

c.v =

(
c/8 if c mod 8 = 0

c.z.v otherwise

c.s =

8><>:c⊕ 1
if c mod 8 = 0 ∧ c.g.l 6= ∅ ∨

c mod 8 = 5 ∧ c.g.j 6= ∅
c.h otherwise

Here x⊕ y denotes bitwise exclusive or, x∧ y denotes logical and,
x ∨ y denotes logical or, and ∅ is a null value for distinguish-
ing group types (see Fig. 2). The predicate in c.s determines
if the group c.g is of type VTT, in which case swings from cor-
ners 0 and 5 map to corners 1 and 4, respectively, within the
same group. Otherwise, we swing to a triangle corner in an-
other group using c.h, skipping over any virtual corners.

Due to the grouping of vertices and triangles, the remaining
operators are straightforward: t.c = 4t + (t mod 2), and c.t =
2(c/8) + (c mod 2). Notice that the assignment of even corners
to the first triangle of a group and odd corners to the second
triangle makes this mapping possible. For a matched vertex v,
v.c = 8v. For unmatched vertices (whose group’s k pointer is
null) 8v gives the index of a virtual corner c, from which we
follow c.h to arrive at v.c. c.n modifies only the lower three bits
of c, and hence can be coded as a small lookup table.

When the connectivity array S and geometry array G are in-
terleaved as a single mesh array M (as in Fig. 2), we must trans-
late indices to the array S to corresponding M indices. (We do
not, however, change what is stored in the S array.) We provide
here a general translation assuming four S fields and n addi-
tional fields per group: S[i] 7→ M [i + n(i/4)], again assuming
integer division. For instance, S[i] 7→ M [i] when n = 0, and
S[i] 7→M [2i− (i mod 4)] when n = 4.

When sequentially iterating over all vertices, triangles, or cor-
ners in the mesh by index, we must test if the index corresponds
to a valid mesh element. (This is not necessary when starting a
traversal from a valid element.) The following predicates test if
a vertex v, triangle t, or corner c is valid:

valid(v) : S[4v + 1].real ∨ S[4v + 2] = ∅
valid(t) : S[2t + 1].real

valid(c) : c mod 8 6∈ {3, 6} ∧ valid(c.t)

where real denotes the bit indicating if a corner is real or virtual.
Finally, we implement c.n and c.p as the exclusive or between c

and precomputed two-bit constants (these operators affect only
the second and third least significant bits of the corner index c).
This allows us to encode the transition table for c.n as a packed
16-bit constant (and similarly for c.p) and to evaluate these op-
erators in constant time using only bitwise shifts and logical op-
erations with no memory accesses:

c.n = c XOR
`
((2× c63916)� (2× (c AND 7))) AND 6

´
c.p = c XOR

`
((2× 4b1e16)� (2× (c AND 7))) AND 6

´
3.2 Boundaries
Whereas the application can freely visit all corners around an
interior vertex from any other incident corner via c.s, bound-
ary vertices require more care. Consider a boundary vertex v
with incident corners {c1, c2, . . . , cm}, such that ci.s = ci+1. As
a convenience to the application, we wish to match v with c1



so that v.c = c1 and the remaining incident corners on v may
be visited via c.s. If we instead matched with any other corner
ci, then upon reaching cm the application (which does not have
access to c.h) would have to backtrack to visit the remaining
corners {c1, . . . , ci−1} using the inefficient c.u operator. Conse-
quently, when v is a boundary vertex, we allow v to be matched
only with c1. If c1.t has already been matched, then we create
a V group for v. Otherwise, we set cm.z = c1 to close the loop.
Thus c.s does not exist when c.h.n.h.n 6= c, in which case c.s
returns null instead of c.h. An implementation may for perfor-
mance reasons choose to explicitly store whether c.s exists, e.g.
as a reserved bit in c.z. A similar approach was outlined in [7]
to support both boundaries and non-manifold vertices.

As discussed above, we use a null value to indicate that the
group does not have a swing in the corresponding position, and
hence to distinguish the four group types (see Fig. 2). Toward
this end, we make the observation that generally c.z 6= c, and
therefore a relative swing of zero is not possible and can be re-
served as a null value. One exception occurs for boundary ver-
tices with one incident triangle, where in order to complete the
swing loop we store a swing pointer from c to itself. In this case
we store as part of the swing pointer a nonzero bit to mark that
this is a real corner, and thus the stored value must in this case
also be nonzero.

3.3 Relative Indexing
Our implementation of Grouper uses relative indexing for the
swing pointers, i.e. we store in the swing table S with corner c
the difference between c.z and c rather than the absolute index
c.z. In practice we store c.z− 2(c/2) to ensure that we reach the
same inter-group corner c.z from in-group corners 0 and 1 (and
similarly for corners 4 and 5).

Although a subtle difference, relative indexing has some de-
sirable advantages for out-of-core and parallel processing. In
particular, by interleaving connectivity and geometry and by
using relative indexing, any contiguous subsequence M ′ ⊆ M
of the mesh array M is also a valid mesh, with the exception
of those vertices v ∈ M ′ whose swing loops extend outside
M ′ and therefore cannot be dereferenced. This can trivially be
remedied by slightly expanding M ′, making it possible to par-
tition and process (slightly overlapping) pieces of M in parallel
without having to remap indices. Conversely, using concatena-
tion one may combine independent Grouper streams, e.g. pieces
of an isosurface extracted in parallel from a partitioned domain.
(As in other mesh representations, we would also have to iden-
tify and stitch vertices and edges shared between pieces if a
water tight mesh is desired.) This feature combined with the
compactness of Grouper makes it well suited as an interchange
format for distributed processing.

3.4 Comparison with SQuad
For the reader’s convenience, the rest of this paper is self-
contained, and familiarity with SQuad [7] is not required. For
the benefit of readers familiar with SQuad, we compare in this
subsection SQuad with Grouper. At a high level, Grouper has
(1) a simpler set of traversal operators, (2) the ability to repre-
sent a wider class of meshes, and (3) better memory locality that
facilitates stream processing and enables streaming construc-
tion.

Operators Both data structures represent connectivity in
terms of an array S of swing references between corners. In
SQuad, these swing references are between “quad corners.”
That is, triangle corner pairs {0, 1} and {4, 5} in Fig. 2 are
treated as a single quad corner. Because applications work with
triangle corners, SQuad requires back and forth translation be-
tween triangle and quad corners, which complicates the imple-
mentation. Grouper, on the other hand, is based entirely on
triangle corners. As in SQuad, our new data structure avoids
visiting triangle corners 1 and 4 when searching for a matched

corner, which conceptually is equivalent to converting to quad
corners—but using only a simple rightward bit shift. Unlike in
SQuad, the S table in Grouper stores triangle corners, and hence
no quad-to-triangle corner conversion is needed.

Representable Meshes SQuad does not support the no-
tion of unmatched vertices (V groups), but assumes that all ver-
tices can be matched. For certain meshes (e.g. those contain-
ing isolated triangles with no neighbors, or triangle strips with
more vertices than triangles) not all vertices can be matched
(since a triangle may be matched with only one of its vertices).
The introduction of a V group allows us to represent any mani-
fold mesh with (or without) boundary.

Streamability SQuad stores two dense arrays: G containing
vertex coordinates and S containing swing references. The nV

vertices and matched triangles are stored as the first nV records
of the S array, and are followed by the remaining unmatched tri-
angles (T groups). Storing these triangles at the end of the array
degrades locality and results in high-span layouts [6] that can
be difficult to stream. Moreover, the predicate c mod 8 = 0 for
identifying matched corners must be supplemented in SQuad
to test if c lies in an unmatched triangle. In Grouper we inter-
leave the G and S arrays and make use of a special T group
that does not use corner 0, allowing us to store these triangles
near their incident vertices and adjacent triangles. In partic-
ular, this allows us to stream out groups using a small mem-
ory footprint, whereas the original SQuad construction requires
the whole mesh, including adjacency information, to reside in
memory. We discuss our construction algorithm next.

4 STREAMING I/O
To handle large meshes, it is necessary that we construct
and process Grouper streams without keeping the entire mesh
in memory. Here we present a construction algorithm that
matches triangles with vertices and outputs records of the
Grouper representation while keeping only a small piece of the
input mesh in memory. Our streaming writer reconstructs ad-
jacency information for triangles on the fly, and so can accept
as input an indexed streaming mesh [6], i.e. an interleaved se-
quence of vertices, triangles, and finalization tags. Because the
algorithm operates on streaming meshes, it can be spliced into
a processing pipeline, running concurrently with its source and
sink processes, without saving to an intermediate file. Although
we preserve the ordering of vertices specified by the applica-
tion, it is often necessary to reorder the triangles to match them
with a vertex and to pair them.

We also present a corresponding streaming reader that se-
quentially reads a Grouper stream and returns to the applica-
tion a streaming mesh. Our reader preserves both vertex and
triangle ordering. Both the reader and writer are compatible
with the libsm streaming mesh API [31].

4.1 Grouper Construction: Streaming Writer
In this subsection, we describe a streaming process that con-
structs a Grouper representation from a streaming mesh con-
sisting of an interleaved sequence of vertex and triangle records
and vertex finalization tags. A finalization tag for vertex v arrives
(at the earliest) with the last triangle incident upon v. After this
happens, we say that v has been finalized. Note that an arriving
triangle may finalize more than one vertex.

We first provide a brief overview of our approach. For conve-
nience, we will use V* to refer to groups that contain a vertex (V,
VT, and VTT), and T* to groups that contain at least one triangle
(T, VT, and VTT). We make a distinction between “groups”—
the conceptual constituents of a Grouper representation—and
a “record”—the bytes representing a group. We maintain two
data structures: a FIFO queue of entries for active groups and
a buffer containing an active portion of the mesh. Each entry
in the queue stores the group type (V, T, VT, or VTT) and either



Fig. 5. Illustration of a partially constructed Grouper stream using our streaming writer. Light gray triangles and vertices have not yet been
processed; saturated colors show active groups stored in the queue; while desaturated colors indicate groups that have been output. Triangles and
vertices with thick outlines are active and are stored in the partial corner table. Stored (inter-group) swing pointers are shown as orange arrows;
implicit (intra-group) swing pointers are gray. VTT groups are tan-colored triangles, VT are blue, T are red, and V are red vertices. This figure shows
a single frame from an animation that is included with the article.

a single vertex index (for V) or canonical corner index (for T*),
from which the remaining group corners can be inferred. En-
tries for V* groups are added at the end of the queue (initially
as V groups) when the corresponding vertex arrives. Therefore,
their order in the queue and hence in the output stream is the
same as the order of the incoming vertices. Arriving triangles
are added to the mesh buffer, which we examine to determine
the adjacency of groups.

Each time a vertex v is finalized, we attempt to match v with
one or two incident triangles present in the mesh buffer and also
identify any incident isolated triangles that have no remaining
vertices available for matching. For each isolated triangle we
add an entry for a T group to the end of the queue. We say
that a triangle is mapped when it is assigned to a group, either
via matching or when placed in a T group, which establishes
an index for the triangle in the output stream. For the entry at
the front of the queue, we attempt to create an output record by
testing if all of the group’s swing targets have been mapped (i.e.
have an assigned location in the output stream), in which case
we say that the group is complete. For each complete group
entry at the front of the queue we output a record.

The above process, illustrated in Fig. 5, is event driven, and
computation is triggered each time a vertex, triangle, or final-
ization tag is encountered in the input stream. We detail each of
these steps below.

Vertex Events To preserve the vertex order of the input
mesh, when we encounter a new vertex we associate it with
a new group and insert an entry for it in the queue. The input
and output index (i.e. group index) of a vertex may nevertheless
differ, because we interleave T records in the stream. Therefore,
we store with each vertex of the mesh buffer its output index,
i.e. the index of the corresponding record in the output stream.

We maintain a mesh buffer of active triangles and vertices
until they are assembled into records and no longer needed. For
simplicity we use a variation of Rossignac’s Corner Table [32]
that stores with each vertex v:

• a triplet of vertex coordinates,
• a reference v.c to some incident corner,
• a bit to indicate whether v has been finalized,
• a reference count of incident triangles not yet output,
• an index identifying the record for v in the output stream.

Triangle Events When we encounter a new triangle in the
input stream, we insert a corner for each of its vertices into our
mesh buffer and for each such corner c we perform the follow-
ing operations (1) For the vertex c.v we increment a counter stor-
ing the number of incident corners. (2) We insert c as the head of

a list of incident corners at the vertex c.v. This unordered list is
stored as a temporary data structure using the swing references
for each corner. The list starts at v.c, so we can insert in constant
time. Later, when v is finalized, we fix the swing references to
be consistent with their topological order around v. Thus, each
triangle corner c is represented as:

• a reference c.v to the corresponding vertex,
• a reference to the swing corner c.s,
• a bit to indicate if c is linked with c.v (see below),
• an index for c in the output stream.

Finalization Events When a vertex v is finalized, we start a
process of (1) assigning matched triangles to the V* group as-
sociated with v and, when necessary, creating T groups, and
(2) streaming out complete group records whose swing refer-
ences to adjacent groups have been determined. These two pro-
cesses cannot be synchronized because a group record can only
be streamed out when it is complete, i.e., when adjacent trian-
gles have been incorporated into groups and proper inter-group
swing references can be inferred. Hence, we keep a FIFO queue
of incomplete groups.

We use a new matching process (different from the one pro-
posed in [7]) to form groups from combinations of active ver-
tices and triangles. As in SQuad, we strive to match each vertex
with an adjacent pair of previously unmatched incident trian-
gles. As explained in Section 6, this objective helps minimize to-
tal storage. Typically, some vertices end up being matched with
a single triangle, and some vertices and triangles may remain
unmatched. We experimented with several matching strategies,
and concluded that eagerly matching a vertex with any adjacent
pair of incident triangles, when possible, or otherwise with a
single triangle worked as well as more sophisticated strategies,
e.g. favoring matches with triangles with fewer unmatched ver-
tices. Note that the constraints on matching boundary vertices
imply that we must wait until v is finalized to perform match-
ing, as only then can we determine whether v is a boundary
vertex.

We link groups only around finalized vertices to ensure
proper insertion of the V groups in the swing cycle. The V group
of a boundary vertex v is linked between the last and the first
corner around v, and hence acts as a virtual corner that com-
pletes the cycle around the vertex. The V group of an interior
vertex v may in principle be linked between any pair of groups
incident upon v. We say that the corner v.c pointed to by a ver-
tex v in a V group is linked with v.

The following sequence of steps is executed when a vertex v
is finalized:



1. Update c.s references around v. We use the initial c.s ref-
erences, which define an unsorted linked list of corners incident
upon v, and rearrange these references into swing order around
v. From now on, these c.s references denote the proper swing
of these corners.

2. Attempt to match v. We swing around v and search for a
consecutive pair of unmatched incident triangles. When more
than one pair is available, we use the first one found. If no pair
exists, we match v with the first unmatched triangle in swing or-
der, if one exists. If we cannot match v with an incident triangle,
we leave it as a V group.

3. Identify isolated triangles. After matching, some triangles
incident upon v may end up having all three of their vertices
matched with other triangles. Such isolated triangles become
T groups and we add entries for them at the end of the queue.

4. Output complete groups. We output records for complete
group entries that are at the front of the queue and remove them
from the queue. A V group is complete after its vertex has been
finalized and linked with a mapped corner. T* groups are com-
plete when their swing targets have been mapped.

5. Deallocate vertices and triangles. Once the records for a
vertex and all its incident triangles have been output, no fur-
ther references to the vertex are possible, and we deallocate the
vertex to make room for new ones. Similarly, we deallocate a
triangle when its vertices have been deallocated. We track this
information using a reference counter stored with each vertex
that is incremented each time an incident triangle arrives and
decremented when the triangle is output in step 4.

4.1.1 Handling High-Span Streams

Because the Grouper construction algorithm preserves the input
vertex ordering, the performance of operations on the resulting
mesh depends upon having a streamable input ordering. In par-
ticular, the maximum size of the group buffer in both the reader
and the writer is related to the largest swing distance, or equiv-
alently to the maximum index difference between adjacent tri-
angles. And because the triangle ordering is made “compati-
ble” with the vertex ordering during matching, the size of the
group buffer is a function of the span of the streaming mesh,
i.e. the maximum index difference of active vertices [6]. This
is so, because a group must be buffered until all of its swing
pointers have been set, and we do not allow outputting groups
out of order (for instance, groups further back in the queue that
have been completed), in part because changing the location of
a group would invalidate all swings to it from groups that have
already been output.

A potential workaround would be to simply reserve a group
and corner indices for the future adjacent triangle t swung to.
However, this might fail, for instance because t’s corner num-
bering depends on with which vertex it is matched, if any, and
whether t is paired. Furthermore, this strategy assumes that t
will appear in the near future, and indeed that it even exists,
which may not be the case for meshes with boundaries.

We note that this buffering problem is not particular to our
representation, but is true for any index-based graph structure
with cycles. For instance, a streaming writer of Rossignac’s Cor-
ner Table [32] or any other adjacency-based data structure suf-
fers from the same problem.

In order to handle high-span streams without exhausting
memory, we propose using extensions. An extension serves as
a virtual copy of a record r that redirects any of r’s unresolved
swings, allowing a long (or simply unresolved) swing to be bro-
ken down into a sequence of shorter swings. Whenever record
r at the front of the queue stays incomplete, e.g. because one of
its incident vertices is not yet finalized, the queue continues to
grow. When the queue size exceeds a user-specified limit, we
evict r by first inserting an extension e at the end of the queue
and then pointing any unresolved swing from r to the corre-
sponding field in e. This allows r and any complete records
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Fig. 6. The fraction of extension groups in the stream as a function of
FIFO buffer size and layout of the 55 million triangle david mesh.

waiting on r to be output. Once the extension reaches the front
of the queue, we test if its deferred swings can now be resolved,
and if not, create a second extension, thus further extending its
swing loops.

Although very long swings in high-span streams may have to
be broken down into many extensions, such swings tend to be
few when the width (maximum number of concurrently active
vertices) of the stream is low; a precondition for frontal stream-
ing [6]. Since each active vertex must be buffered, the buffer size
must be at least as large as the width. In practice, using a queue
of up to one million groups (our default) the number of exten-
sion groups tends to stay below 1–2% even for large high-span
meshes (see Fig. 6). Because each FIFO entry is a single integer,
even larger buffers can often be used to further limit the number
of extensions.

Extensions are identified by our corner operators and itera-
tors by having all of their corners marked as virtual, and never
contain geometry. Virtual corners swung to in an extension are
by convention assigned odd indices to maintain the efficiency
of c.v, which as described in Section 3.1 traverses the loop look-
ing for corner 0. Hence c.v requires no modification to handle
extensions. Similarly, c.s already tests for and skips over virtual
corners in V groups, and therefore needs no modification either.

4.2 Grouper Consumption: Streaming Reader

As a counterpart to the streaming writer described in Sec-
tion 4.1, we describe here a corresponding streaming reader that
reads a Grouper file or stream and emits to the application an
interleaved sequence of vertices, indexed triangles (that refer to
vertices by their global index), and finalization tags.

Our approach is to emit both vertices and triangles in the or-
der in which they are stored in the Grouper stream by sequen-
tially reading and buffering records in a FIFO queue. Whereas
we may immediately pass through the vertex stored in a record
to the application, the vertex indices c.v associated with trian-
gle corners c are not always readily available, as they are found
by swinging to the corner matched with c.v, which may appear
further along the stream. Consequently, before emitting the next
triangle, we follow its swing pointers and attempt to complete
loops. If in this process we reach a record that has not yet been
read, then we sequentially input and buffer records and emit
their vertices until the required record has been read. Once all
records in the three swing loops of a triangle t are buffered, we
say that t is complete, at which point we can infer its vertices
and emit t.

The libsm API also provides one finalization bit per trian-
gle corner that indicates whether the triangle is the last one
in the stream to reference the associated vertex. When set,
the application may deallocate storage for the vertex. Grouper
does not explicitly store any finalization bits, because we can



infer this information by examining the swings around a ver-
tex. In particular, when a closed swing loop of group records
L = (c.g, c.z.g, c.z.z.g, . . . , c.g) is detected for c.v, all triangles
incident on c.v are known. (As discussed above, we also form
loops for boundary vertices.) We thus mark c.v as finalized by
the last triangle stored in the (non-V) record in L with largest in-
dex. Although a triangle’s vertices may in principle be known
before their swing loops are closed, we do not emit the triangle
until it is complete to ensure proper finalization. Based on this
algorithm, we store with each record in the queue four entries—
one per vertex—that each contain a swing pointer c.z, a vertex
index c.v, and a finalization bit.

Once the vertex and triangles in the record at the front of the
queue have been emitted, we can remove and deallocate the
record. For a V group, we must first ensure that the swing loop
it partakes in has been closed before removing it from the queue.
Consequently, to locate the next triangle to be emitted, we main-
tain an additional pointer into the queue.

4.2.1 Handling High-Span Streams
Because the group record at the front of the buffer cannot be
removed until its vertices have been finalized, the buffer may
grow to be very large if the stream has a high span. This
could be remedied simply by moving stagnant records to a spill-
over table, so that swings outside the buffer are redirected and
looked up in the table.

5 PROCESSING GROUPER

Having described the basic Grouper representation, its con-
struction, and operators acting upon it, we now turn our atten-
tion to how applications process Grouper streams.

5.1 Frontal Streaming
When memory is scarce or when the Grouper file does not re-
side on disk, e.g. arrives over a network or from another pro-
cess, we advocate stream processing. In frontal streaming, the
application maintains an active set of vertices—the front, con-
sisting of introduced but not yet finalized vertices—which usu-
ally varies in size over the stream. Vertices are identified by
global indices (e.g. when referenced by triangles), and it is cus-
tomary to store the active vertices in a map (e.g. a hash). When
a vertex is finalized, it can be removed from the map. Such a
data structure is sufficient to, for instance, compute the surface
area of a mesh.

For tasks that require processing not just individual triangles
but larger collections of adjacent elements (e.g. simplification,
subdivision, smoothing, etc.) the application also maintains an
active set of triangles in a buffer between the input front and the
output front (for applications that both read and write meshes).
This usually involves dynamically inserting and removing tri-
angles to and from a partial in-core mesh that supports full con-
nectivity queries (cf. [6, 20, 28]). The triangle buffer may or may
not be of fixed size. The dynamic memory management and
construction of such an adjacency-based data structure can be
quite computationally costly. In particular, this effort is dupli-
cated by each module in a processing pipeline, multiplying the
cost.

5.2 Windowed Streaming
Windowed streaming differs from frontal streaming in that a
fixed-size buffer that holds a superset of the active vertices (and
possibly active triangles) is used. Our implementation of win-
dowed streaming maintains a circular fixed-size FIFO queue of
records that acts as a sliding window over the mesh. Each in-
coming record replaces the least recently read record, which in
a sense amounts to a conservative rather than eager approach to
finalization. As long as the swing references are reasonably lo-
calized and never span more than the buffer size, this makes
for a particularly efficient mode of processing. In particular,

no mapping from the on-disk format to an in-core partial mesh
data structure is needed (as in frontal streaming), because the
two are one and the same. In case the buffer is too small and
a swing reference points outside the buffer, a spillover buffer
(e.g. a hash map) may be used, as suggested in [6]. Such “high-
span” records are usually rare in otherwise streamable meshes
with a low width, and therefore do not consume a lot of mem-
ory. Before evicting a record, one may determine if all of its
vertices have been finalized by traversing their swing loops; a
complete loop implies that a vertex can be finalized (even for
boundary vertices; see Section 3.2). If not, the record is moved
to the spillover buffer. We found that our benchmark meshes,
when ordered along a single geometric direction, could be pro-
cessed without a spillover buffer while using a sliding window
smaller than 3% of the total mesh.

For tasks that only modify the geometry (e.g. smoothing),
windowed streaming simply updates the geometry of each
record and passes it through, possibly to a downstream module.
In case the mesh connectivity is changed, we use the streaming
writer from Section 4.1 to produce a new Grouper stream.

We note that hybrid frontal and windowed streaming ap-
proaches have been used previously, in which the sliding trian-
gle buffer is of fixed size but the input and output vertex fronts
are dynamically managed; see for instance [19, 20, 28]. Xia and
Shaffer [29], on the other hand, make use of fixed-size vertex
and tetrahedron buffers. Unlike Grouper, however, none of the
mesh formats employed by these methods provide adjacency
information, and therefore they all require on-the-fly connectiv-
ity reconstruction.

5.3 Out-of-Core Random Access

In addition to being a lean in-memory data structure, Grouper
supports random-access traversals of meshes stored in external
memory (i.e. disk) by memory mapping the mesh onto the oper-
ating system’s virtual memory space, e.g. using the Linux mmap
system call. This establishes a mapping between the on-disk
mesh and the calling process’s memory addresses, and enables
demand-driven paging of the mesh from disk. This entails load-
ing fixed-size, contiguous “pages” into memory whenever the
application accesses a page that has either not yet been loaded
or has been evicted from main memory.

On modern computers, the operating system augments
demand-driven paging by predicting future data fetches and
“prefetching” the associated pages. For mesh traversals that re-
quire random-access, prefetching is unlikely to predict future
access, but for tasks like mesh smoothing that iterate over the
whole mesh (e.g. using a sequential outer loop), accesses will
proceed through the mesh in an approximately linear pattern, a
use case for which prefetching systems are heavily optimized.
Such sequential loops can trivially be parallelized on multicore
computers using OpenMP [8] directives; something we explore
in Section 7.

We note that although our c.v operator may involve repeated
memory accesses, it is often possible to confine such accesses
to the same memory page using a coherent ordering of the ver-
tices (and thus triangles). Moreover, the compactness of roughly
2 rpt for connectivity coupled with a compatible interleaving
of geometry and connectivity promotes locality of reference in
Grouper and avoids excessive thrashing.

Finally, one attractive property of Grouper is that the pag-
ing from external memory is done entirely transparently from
the user application, which treats the Grouper data structure as
though it were a complete contiguous in-memory array. Con-
sequently, existing applications that rely on corner operators
may use Grouper directly in in-core or out-of-core mode with
no further code changes. In particular, such applications need
not be re-engineered as stream modules, which might otherwise
involve substantial algorithmic changes.



Fig. 7. Matching graph for general (left) and valence-three (right) ver-
tices, which require additional nodes (hollow) and edges (gray).

6 OPTIMAL MATCHING IS NP-HARD

Our greedy matching and pairing algorithm strives to match
one or two adjacent triangles with a shared vertex, and to leave
as few unmatched triangles as possible. In an attempt to as-
sess its effectiveness, we show that our problem is equivalent
to the well-known maximum independent set (MIS) problem, and
compare our solution to prior heuristics for MIS. Given an undi-
rected graph, the MIS problem is to find a set of mutually non-
adjacent nodes of maximum cardinality; a problem known to be
NP-hard.

The matching and pairing needed for Grouper can be cast
as a combinatorial optimization problem in which we seek to
minimize the storage cost. It is easy to see that the storage cost
in number of fixed-size records (excluding extensions) equals
nV +nU , where nV is the number of vertices and nU the number
of unmatched triangles (i.e. T groups). This is so, because each
record either stores a vertex or an unmatched triangle. Since
nV is fixed, our goal is to minimize the number of unmatched
triangles nU .

We reduce the matching problem to MIS by constructing a
graph G = (C, E) from a triangle mesh. The nodes C corre-
spond to the corners of the mesh. Thus each corner added to the
independent set corresponds to matching a vertex with a trian-
gle. To avoid multiple matches per triangle, we include in E an
edge between each pair of corners within a triangle. To prevent
matching vertices with more than two edge-adjacent triangles,
we add edges between each pair of non-adjacent corners (ci, cj)
around the vertex, i.e. corners such that ci.v = cj .v, ci.s 6=
cj , cj .s 6= ci. Because no edges exist between adjacent cor-
ners, pairs of edge-adjacent triangles may still be matched with
a shared vertex.

The resulting graph is illustrated in Fig. 7(left). It has all the
right properties except for interior vertices of valence three. Be-
cause the corners {ci, cj , ck} around such vertices are mutually
adjacent, nothing prevents all three of them from being matched
with the same vertex. We resolve this by adding to C three ad-
ditional nodes {cij , cjk, cki} that represent pairs of triangles, let-
ting the existing corners denote unpaired triangles. We also add
edges between all nodes {ci, cj , ck, cij , cjk, cji} and between cij

and the existing neighbors of ci and cj (and similarly for cjk and
cki), for a total of 27 additional edges. The maximum indepen-
dent set of this graph then represents the matching and pairing
with the lowest storage cost.

We note that since there are roughly twice as many triangles
as vertices, it is in general not possible to minimize the number
of unmatched triangles without also pairing triangles. In other
words, the MIS solution will favor matching shared over non-
shared vertices in adjacent triangles, since doing so “costs” only
one instead of two precious matched vertices.

We have compared Grouper with several heuristic algo-
rithms for MIS [33–36]. Our algorithm is able to exploit the par-

ticular structure of the graph, and therefore leaves far fewer tri-
angles unmatched than the more naı̈ve MIS algorithms BASIC
and RANDOMOFFLINE described in [36] and the well-known
minimum-degree GREEDY algorithm (see [34]). On average, we
produce fewer than 3% unmatched triangles. For small meshes
with a few hundred triangles, however, we have found that
GRASP [34] and Dharwadker’s algorithm [35] may produce
optimal solutions with no unmatched triangles. Given their
high asymptotic complexity (e.g. the latter runs in O(n8) time
on n nodes), their use on larger meshes may be limited.

7 RESULTS

We here present storage and performance results for our
Grouper representation. We used an 8-core 2.66 GHz Intel Xeon
X5550 computer with 12 GB of 1.33 GHz DDR3 RAM and a
7,200 RPM Seagate Barracuda SATA disk for our experiments.

7.1 Storage Efficiency

In order to assess how well we are able to match and pair tri-
angles, we used our streaming writer with a FIFO queue of at
most one million groups to convert several meshes ordered in a
number of ways, including breadth- and depth-first orderings,
and geometric orderings based on linearly sorting along a sin-
gle direction and by ordering vertices along a z-order space-
filling curve. We use 32-bit floats and integer references and
assume a fixed geometry storage cost of 3 floats per vertex,
or equivalently 1.5 rpt (references per triangle) using the ap-
proximation nT ≈ 2nV . The connectivity storage cost of our
Grouper representation is 4(nV + nU ) rpt, or roughly 2.0 rpt
when nU (the number of unmatched triangles) is small. In
addition to storage efficiency, we present in Table 1 the over-
head component nU/nV of the storage cost in records stored
per vertex (recall that we must store at least nV records). To
calibrate our results, we compare storage (including geometry)
with the SMB binary streaming mesh format [31]; a variation on
Rossignac’s Corner Table [32] dubbed VST (for vertex swing ta-
ble); and meshes constructed by the original in-memory SQuad
method [7], which has more flexibility when matching because
it can choose the traversal order. We also compare our over-
head with the minimum-degree greedy independent set algo-
rithm [33]. Our comparisons include only representations that
use fixed-length encodings, and a more comprehensive com-
parison against representations with variable-length encodings,
e.g. OEMM [4], OoCM [20], SMC [21], or RACM [13] is left as
future work.

The SMB format stores vertex coordinates and indices as 32-
bit words. To distinguish vertices from triangles, one bit per
mesh element is used. These bits are packed into 32-bit words
that specify the type of the next 32 records. One bit per ver-
tex index is reserved for finalization. The resulting storage cost
(geometry + connectivity) is roughly 1.5 + 3.0 = 4.5 rpt. As
seen in the table, our format reduces storage over SMB by about
20%, while encoding incidence and finalization, and (addition-
ally) adjacency.

The VST format stores with each triangle corner c.v and c.s,
and with each vertex v.c, resulting in a total cost of roughly 1.5+
6.5 = 8.0 rpt. Consequently VST requires about 2.2 times the
storage of Grouper, while not being readily streamable.

Because SQuad favors pairing adjacent consecutive triangles
in a spiraling traversal, its storage cost is similar to our Grouper
when given a mesh in a similar depth-first order. One notable
exception is the Puget Sound mesh, whose relatively high width
and span resulted in 15% of records being extensions. With no
FIFO queue limit, its storage cost is reduced to 2.172 rpt. The
geometrically ordered meshes arrive in a less predictable (to the
writer) order, and with less locality of reference. In particular,
the z-ordered meshes are rich in high-span vertices that have
an adverse effect on matching. Nevertheless, even the worst re-



mesh nT %v6
breadth-first depth-first linear z-order SQuad Greedy SMB VST
rpt ovhd rpt ovhd rpt ovhd rpt ovhd rpt ovhd ratio ratio

bunny 69,451 75.1 2.060 2.7 2.061 2.7 2.066 3.0 2.132 6.2 2.054 28.5 1.26 2.22
rocker arm 80,354 65.2 2.059 2.9 2.055 2.7 2.051 2.5 2.115 5.7 2.052 28.3 1.26 2.22
horse 96,966 66.5 2.058 2.9 2.055 2.7 2.061 3.1 2.120 6.0 2.046 28.2 1.26 2.22
dinosaur 112,384 57.9 2.081 4.0 2.078 3.9 2.084 4.2 2.161 8.1 2.072 27.6 1.25 2.20
armadillo 345,944 52.6 2.073 3.6 2.075 3.7 2.096 4.8 2.139 6.9 2.069 27.0 1.25 2.21
hand 654,666 53.4 2.092 4.6 2.091 4.5 2.096 4.8 2.163 8.1 2.096 27.0 1.24 2.19
buddha 1,087,716 32.1 2.186 9.4 2.178 9.0 2.171 8.6 2.221 11.1 2.150 25.3 1.19 2.09
blade 1,765,388 62.4 2.081 4.0 2.086 4.3 2.088 4.4 2.123 6.1 2.077 27.7 1.25 2.20
welsh dragon 2,210,673 86.7 2.026 1.3 2.033 1.7 2.031 1.5 2.111 5.5 2.027 29.7 1.28 2.26
asian dragon 7,219,045 89.1 2.033 1.7 2.039 1.7 2.026 1.3 2.115 5.7 2.026 29.8 1.28 2.25
thai statue 10,000,000 44.4 2.136 6.8 2.220 7.2 2.123 6.2 2.222 11.0 2.111 26.3 1.22 2.14
david 55,514,795 51.6 2.056 2.6 2.096 2.9 2.062 2.9 2.163 7.3 2.082 26.7 1.26 2.22
puget sound 134,217,728 29.3 2.154 7.7 2.580 9.5 2.151 7.5 2.193 8.3 2.156 24.5 1.21 2.12
median 1,087,716 57.9 2.073 3.6 2.078 3.7 2.084 4.2 2.139 6.9 2.072 27.6 1.25 2.21
mean 16,413,470 58.9 2.084 4.2 2.127 4.3 2.085 4.2 2.152 7.4 2.078 27.4 1.25 2.20

Table 1. We report for each mesh its number of triangles nT and percentage of valence-6 vertices. For each layout, we report Grouper connectivity
storage in references per triangle (rpt) and percentage overhead nU/nV in terms of unmatched triangles nU . We also report corresponding results
for SQuad, greedy independent sets, and the total storage ratio of SMB and VST to Grouper for the breadth-first layout.

sults of our method show a significant improvement in matched
triangles over the greedy MIS method.

7.2 I/O Speed

We construct a Grouper representation from streaming input at
a rate of about 1.7 million triangles per second (excluding I/O
time). For low-span streams (e.g. breadth-first and linear geo-
metric orderings) the construction buffers in memory a maxi-
mum of 1–3% of the input triangles. For example, the 134 mil-
lion triangle Puget Sound mesh can be converted from a 2.3 GB
SMB file to a 1.9 GB file in our Grouper format using only 9.8 MB
of working memory. This compares favorably with the SQuad
in-core construction, which for the same mesh uses 6.2 GB of
RAM and takes twice as long.

Our frontal streaming reader of Grouper files described in
Section 4.2 achieves a throughput of about 2.8 million trian-
gles per second (including I/O time), which is roughly two
times slower than reading an SMB file. This difference in
speed is attributable to the need to buffer records, to resolve
triangle-to-vertex references, and to detect finalization events
using our representation. As shown below, I/O and processing
of Grouper are more efficiently accomplished using windowed
rather than frontal streaming.

7.3 Operator Speed

At 3.9 nanoseconds, our c.s operator is comparable in speed
to its SQuad counterpart. In spite of c.v being conceptually
simpler, S array accesses in Grouper involve converting rela-
tive indices to absolute ones that are then implicitly remapped
to skip over the interleaved geometry records, resulting in a
14.1 nanosecond execution time, or 45% slower than in SQuad.

7.4 Processing Speed

We evaluated several different modes of accessing our Grouper
format using a suite of processing kernels designed to exercise
a variety of mesh queries and traversal patterns:

• Components: Count the number of connected compo-
nents in the primal graph. This is accomplished using a
generalization of the algorithm presented in [37], which
uses incidence information only and a union-find forest
that is pruned each time a vertex is finalized.

• Area: Loop over all triangles and compute the total sur-
face area. This can be computed directly by maintaining
a map of vertex coordinates keyed by global vertex index,
i.e. without maintaining any connectivity.

• Silhouette: Count the number of silhouette edges with re-
spect to an arbitrary view direction. For each incident edge
of each finalized vertex v, we compute the normals of the
two adjacent faces that share the edge. We then compare
the signs of the dot products of the normals with the view
direction to determine if the edge is on the silhouette. Note
that we count these silhouettes even if they are occluded.

• Traversal: Starting from an arbitrary seed triangle, per-
form a spiraling depth-first traversal of the whole mesh
by visiting adjacent triangles (as in [32]). To speed up the
computation and keep the stack size small, we maintain an
auxiliary visitation flag with each vertex and triangle.

• Ascent: Starting from an arbitrary seed vertex, perform a
steepest ascent traversal along the mesh edges using one
of the coordinates as function value. The traversal ends at
a local maximum.

• Geodesic: Starting from an arbitrary seed point and direc-
tion, trace a geodesic path along the surface until a surface
boundary is encountered.

For the first three tasks, a single-pass streaming implementation
is possible, which we describe briefly above. A corresponding
random-access implementation loops over vertices or triangles
in index order, and for connected components infers finaliza-
tion information by testing if the current triangle has the high-
est index among those triangles incident on a vertex. (Because
such finalization information allows the union-find data struc-
ture to be pruned, this random-access approach to computing
connected components is faster than alternative methods, e.g.
based on invading and marking the vertices of each compo-
nent.) The remaining three tasks traverse the mesh in a data-
dependent manner dictated by the mesh geometry and/or con-
nectivity, precluding a single-pass streaming implementation
and necessitating random access. The last two tasks, in par-
ticular, visit only a small subset of the mesh. In these cases, we
executed the task many times using different seeds in order to
obtain reliable timings.

In addition to the mesh queries involved in these tasks, Ta-
ble 2 summarizes the median execution time across 15 runs for
each task, data structure, and access pattern. We note that the
execution time depends largely on whether the mesh has to be
fetched from disk or is already partially or even totally memory-
resident. The latter case occurs, for instance, in pipelined
streaming, when the output of one process is piped directly to
the input of the next downstream process via shared memory.



task geo. adj. sub.
cold mode warm mode

VST direct interleaved blocked SMB frontal windowed VST direct interleaved blocked SMB frontal windowed

components 47.5 36.4 19.3 26.4 26.4 25.6 23.3 12.5 20.5 21.4
area X 52.9 24.7 15.9 27.7 15.3 23.6 15.9 11.5 11.3 7.0 3.2 8.1 17.9 9.7
silhouette X X 64.3 35.7 14.9 40.1 42.5 46.9 25.8 23.2 22.5 7.0 3.5 36.8 41.6 20.9
traversal X 96.3 48.3 14.7 12.6
ascent X X X 72.5 30.4 17.3 11.8
geodesic X X X 8.6 6.1 5.0 4.8

Table 2. Median execution time in seconds for our benchmark tasks using different mesh representations and access patterns. Only the top
three tasks have streaming implementations. The leftmost columns show the mesh queries (geometry and adjacency) involved and whether only
a subset of the mesh is visited. We report timings for cold mode (disk caches are initially flushed) and warm mode (disk caches are pre-loaded).
Columns other than VST and SMB correspond to the use of Grouper in direct (random-access) serial mode and in parallel mode with interleaved
and contiguous block static loop scheduling, as well as using frontal and windowed streaming.

The mesh may also be partially cached in disk buffers from ear-
lier processing. Consequently, we timed each task both when
the disk buffers were explicitly flushed before each run (cold
mode) using the Linux drop caches mechanism, and when
the caches were warmed by first executing the task once and
then timing the next 15 runs without flushing (warm mode).
These two modes can be thought of as extremes that provide
lower and upper bounds on processing time. Moreover, by run-
ning in warm mode, we are able to largely exclude the dominant
disk access time, allowing us to measure the underlying per-
formance of each data structure independent of any speedups
obtained through reduced I/O.

In order to support direct random access to the Grouper file,
we used memory mapping (both in cold and warm mode). The
area and silhouette computations loop over the mesh triangles
or vertices by index, and trivially parallelize. We used OpenMP
for loop parallelization with static scheduling and two different
assignments of threads to loop iterations: interleaved, in which
thread i of n processes indices kn+ i (where k is a non-negative
integer), and blocked, in which each thread is assigned an equal-
size contiguous subsequence of indices.

To evaluate the different mesh representations, we used the
David mesh in breadth-first order. We converted this mesh
from SMB format to our Grouper format, which very slightly
changed the order of triangles to accommodate matching. The
resulting Grouper representation was then converted to VST,
preserving the ordering of both vertices and triangles (but re-
moving “holes” in indices due to non-VTT records).

Based on the numerical results from Table 2, also shown
graphically in Fig. 8, we make the following observations.

In direct access mode on a single processor (Fig. 8(d)),
Grouper yields improved performance over VST—even when
the mesh is memory-resident. In cold mode, Grouper is 1.3–2.4
times faster. Although all tasks visit the same number of trian-
gles, notice that the geodesic task is much faster than the others
because it often revisits the same cached subset of triangles, e.g.
when circling a cylindrical part of the mesh, such as an arm.

Using OpenMP for loop parallelization on 8 cores, we
achieved speedups of up to 6.4x. As is evident from Fig. 8(b)
and 8(c), interleaved thread assignment is beneficial in cold
mode, as this gives each thread some amount of work to do
each time a disk block is loaded, while in blocked mode the
threads contend for I/O and are idle while waiting for I/O re-
quests to be serviced. In warm mode, the roles are reversed,
in part because of the drastic differences in latency and band-
width between memory and disk accesses. Furthermore, loop
blocking provides for higher locality of reference and thread-
local caching, whereas when interleaved the threads each touch
every single memory page of the mesh via small strides, and
in effect increase memory bandwidth and cache usage by the
number of threads.

In cold frontal streaming mode, Grouper is 1.1–1.5 times
slower than SMB. Because the frontal streaming implementa-
tions are built on top of the same streaming mesh API, the same

tasks are executed for both formats, possibly including connec-
tivity reconstruction, which does not take advantage of the ad-
jacency information stored with Grouper. As discussed above,
our Grouper frontal reader must also buffer records and recover
vertex references and finalization—information that is readily
available in the SMB format. This extra work can be costlier
than the simple processing tasks themselves.

We further note that frontal streaming access is more effi-
cient than random access using Grouper for tasks that require
only incidence (i.e. components and area). However, when ad-
jacency information is needed, as in the silhouette computation,
frontal streaming is less efficient, because then the adjacency
information must first be recovered via construction and dy-
namic management of a partial mesh data structure. Note that
Grouper already provides this information in direct mode.

Using Grouper, windowed streaming outperforms frontal
streaming by as much as a factor of two. In spite of having
to explicitly maintain a circular buffer of records (we used a
fixed-size buffer of 216 records) and incurring one disk read per
record, windowed streaming is also consistently more efficient
than memory-mapped direct access, both in cold and warm
mode, in part due to a much smaller memory footprint. This
performance difference is particularly evident in cold mode,
where the sequential reads made in windowed streaming al-
low the operating system to pre-fetch disk blocks. Although the
outer loop in direct mode is also sequential, the non-sequential
accesses made to incident elements, e.g. when resolving vertex
references by following swing loops, result in localized but non-
sequential accesses, making it more difficult for the operating
system to predict the next memory page needed.

8 DISCUSSION

Before concluding this paper, we summarize some of the limi-
tations and benefits of our Grouper representation.

8.1 Limitations
We envision Grouper being most useful in algorithms that do
not require many “random” changes to connectivity. Though
it is possible to reconstruct groups within the local neighbor-
hood of a changed triangle, if the number of groups increases
the new records must be placed at the end of the array, nega-
tively impacting locality of reference and overall performance.
For processing that results in a completely new mesh, such as
subdivision or decimation, our streaming writer may be used to
output the mesh. High-span streams like depth-first and space-
filling orderings require the use of extensions, which incur an
overhead in storage.

One possible drawback of our representation is that both ver-
tex and triangle indices contain “holes” that correspond to non-
VTT groups. Although such holes are easy to identify, applica-
tions that assume contiguous indices must be modified. More-
over, while rare (less than 5% on average), these holes lead to an
overhead in storage for any user-defined data associated with
vertices or triangles.
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Fig. 8. Performance of (a–c) streamable tasks and (d) Grouper direct access relative to the VST random-access mesh data structure in cold (blue)
and warm (red) mode.

8.2 Benefits
Our Grouper representation offers the following benefits over
alternative data structures and file formats:

• Like SMB, Grouper is a streaming mesh representation.
However, Grouper also supports random access to ver-
tices and triangles, and directly stores adjacency informa-
tion that an SMB reader must recover on the fly. In spite of
this, Grouper uses roughly 20% less storage than SMB.

• Although VST and Grouper both support random access,
VST does not interleave geometry and connectivity, and
therefore does not support (linear) stream processing. This
interleaving coupled with relative indexing further en-
ables instant partitioning for distributed data-parallel pro-
cessing of Grouper without reindexing or repackaging.
Moreover, Grouper uses 2.2 times less storage than VST,
resulting in a proportional performance increase in out-of-
core applications.

• Unlike SQuad, Grouper supports a memory-efficient con-
struction process that allows the mesh to be streamed out
immediately during mesh generation or editing. Grouper
also enforces the locality of reference that SQuad lacks
and is needed for subsequent stream processing. Finally,
Grouper stores triangle rather than quad corner references,
which results in simpler mesh navigation operators.

• In comparison to out-of-core representations like
OEMM [4] and Isenburg and Gumhold’s out-of-core
mesh (OoCM) [20], Grouper supports streaming construc-
tion and more efficient storage, thereby reducing time,
temporary and persistent disk usage, and memory usage
during construction. For instance, Grouper uses 2.4 times
less storage than both OEMM and OoCM for the David
mesh, and is constructed roughly 100 and 42 times faster
than indexed OEMM and OoCM, respectively.

In addition to serving as the first unified mesh file format and
data structure for both streaming and random access, we have
found Grouper useful as a compact intermediate representation
for constructing even more space-efficient mesh data structures,
such as the recently proposed LR [9] and Zipper [10] data struc-
tures. Building such data structures requires a temporary mesh
representation that supports adjacency and incidence queries,
but usually the input stores only incidence information. Be-
cause Grouper requires less storage than a standard incidence-
based file format like SMB, and because it can be converted from
such a format using very little memory, it is suitable as both in-
put and temporary representation for constructing and possibly
even rebuilding mesh data structures in applications that gen-
erate or modify the mesh connectivity.

Finally, a unique strength of Grouper is the support for
both streaming and random access through already established

APIs. This allows Grouper to be used in existing streaming or
random-access applications with no further code changes.

9 CONCLUSION

We have presented Grouper: a data structure and format for
representing triangle meshes that provides adjacency and in-
cidence information in amortized constant time and that in-
teracts well with virtual memory and processor caches. Our
format supports the libsm streaming mesh API, making it
a drop-in replacement for existing streaming algorithms. It
also supports random-access mesh traversal, making possible
out-of-core algorithms that are difficult to write in a stream-
ing paradigm. Grouper enables parallel processing by allowing
multiple threads to iterate over a mesh without the synchroniza-
tion bottleneck created when allocating and deallocating vertex
storage in a typical streaming algorithm. We have presented a
construction algorithm for our data structure that operates on
streaming input and that produces meshes whose connectivity
storage, at just over two references per triangle, rival those at-
tained by the global, non-streaming SQuad construction algo-
rithm. We identify the construction problem as a well-known
NP-hard optimization problem, and show that our algorithm is
an excellent heuristic solution. By relaxing the order in which
vertices and triangles are stored, we are able to improve local-
ity of reference over SQuad, thereby enabling memory-efficient
streaming and more general out-of-core computations on huge
meshes using SQuad’s compact storage.
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and Mario Szegedy, “Streaming algorithms for independent sets”,
in International Colloquium on Automata, Languages and Program-
ming, 2010, pp. 641–652.

[37] Martin Isenburg and Jonathan Schewchuk, “Streaming connected
component computation for trillion voxel images”, in Workshop on
Massive Data Algorithmics, 2009.


